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ABSTRACT

Image colorization aims to add colors to grayscale images,
which used to be a time-consuming and tedious task that re-
quires lots of human efforts. In this paper, we present a novel
colorization method based on color propagation and rank
minimization. Given a small portion of chrominance values
and a grayscale image, we firstly propagate the known color
values to other pixels to be colorized. As the colorized image
after color propagation is not accurate, we then define a con-
fidence matrix to measure the propagation fidelity. Finally,
pixels that have propagated chrominance values with confi-
dence are colorized by rank minimization, which exploits the
redundancy of natural images. Experimental results on real
data set show that our proposed method achieves state-of-the-
art colorization quality.

Index Terms— Colorization, rank minimization, image
restoration, matrix completion

1. INTRODUCTION

Due to the limitation of camera technology, photos and
movies are all monochrome in the past. Colorizing those
monochrome images perceptually to make them meaningful
and visually appealing is of great interest. The key challenge
of this problem is that there are a number of potential colors
that can be assigned to each gray pixel. Thus this problem
is highly under constrained and exist many solutions for the
general case.

Recently, several effective algorithms have been proposed
to reslove the colorization problem with reasonable amount of
color cues as the input. These color cues can be categorized
into three classes, namely, color scribbles, example images
of similar colors and scattered chrominance values indicating
desired colors of some pixels.

Information of color scribbles is usually delineated by
manual labor. Colorization with this kind of input requires
a user to mark color scribbles on the target image [1, 2, 3].
Besides color scribbles, in [4], scribbles that help to group
the regions are also required, by which the number of color
scribbles can be greatly reduced. All these methods assume
that color image is locally smooth and propagate known col-
ors inside scribbles to the neighbouring pixels to colorized

based on an optimization framework.
Some methods require user to provide reference images

that are similar to the image to be colorized [5, 6]. In [7],
partial segmentation information are also needed. In this kind
of methods, the key idea is to exploit multiple image features
to transfer the color information from reference color images
to the target gray image.

The last category of color cues is a small portion of scat-
tered color labels [8, 9]. These given scattered chrominance
values can be randomly or uniformly distributed in the im-
age. Though scattered color labels can be regarded as “micro”
scribbles, however, rather than marking manually, they are
usually generated (or selected) by other algorithms. There-
fore, in this work, we regard it as a different category of in-
put color cue. Pang et al.’s work [8] learns a natural image
dictionary using sparse representation from a set of natural
images, and then, starting from the given chrominance val-
ues, colorizes the whole grayscale image patch by patch via
sparse optimization. In [9], Wang et al. recover the unknown
chrominance values by matrix completion. Some methods us-
ing this kind of color cue can also apply color scribbles, such
as the approach of [9].

In this paper, we present a novel colorization method via
color propagation and rank minimization using the last kind
of color cues, namely, scatted color labels. We firstly propa-
gate the known chrominance to grayscale pixels by the local
texture and intensity similarity of natural image. Then a confi-
dence matrix that capture the propagation accuracy is defined
since the initial colorized image by color propagation is not
accurate. Finally, we apply rank minimization to colorize the
pixels that have chrominance values with confidence. Sec-
tion 2 elaborates our proposed method. Experimental results
are presented in Section 3. Finally, Section 4 concludes the
paper.

2. COLORIZATION VIA COLOR PROPAGATION
AND RANK MINIMIZATION

Our work is motivated by the recent development of matrix
completion, which restores missing elements of a matrix from
a portion of known values, and matrix recovery, which re-
stores a matrix corrupted by noises and outliers. The most
important spirit of matrix completion and recovery techniques



(a) (b) (c) (d)

Fig. 1. Colorization of a grayscale image with the proposed method. (a) Monochrome image with 0.5% scattered color labels.
(b) Image after color propagation. (c) Confidence map of the propagated colors. (d) Colorization result.

is rank minimization. Since the problem of rank minimiza-
tion is NP-hard, the nuclear norm (convex envelope of ma-
trix rank) is widely used in the practice. Recently, Candes
et al. [10, 11] show that low rank matrices can be recovered
exactly from a small number of sampled elements under cer-
tain conditions. By virtue of this elegant property, rank min-
imization has been used in collaborative filtering [10], back-
ground modeling [11], image alignment, etc. To the best of
our knowledge, there exist only one attempt [9] that applies
matrix completion theory to image colorization. Based on dif-
ferent assumptions and inspiration, we apply rank minimiza-
tion to image colorization in a different way.

Fig. 1 demonstrates the main process of our proposed
method. Our approach is based on the intuition that natural
image is NOT full of rank and color components on a nat-
ural image are highly correlated. Firstly, there are intrinsic
similarity and redundancy on a natural image. Lots of image
processing applications, such as de-noising, inpainting and
super-resolution, exploit the redundancy in natural image and
reach excellent performance in the literature. Secondly, di-
mension reduction algorithms, like principle component anal-
ysis (PCA), aim to find significant bases that can recover im-
ages with little distortion. The feasibility of dimensionality
reduction techniques reveal the singular property of natural
images. Generally speaking, if the rank of a natural image is
full, its columns or rows are all linearly independent, and the
colorization problem will be extremely hard to solve. Con-
versely, if the natural image is not full of rank, columns or
rows are correlated, and the colorization problem becomes
solvable. Lastly, the values of RGB color components are
found to be highly correlated. They tend to gradually change
in smooth region, and fast change in edge region simultane-
ously.

2.1. Notations

For better presentation, some notations are firstly introduced.
For a matrix X ∈ Rm×n, we denote ||X||0 as the number of
non-zero entries in X and ||X||1 =

∑
i,j |Xi,j |. ||X||F is the

Frobenius norm (i.e. ||X||F = (
∑

i,j X2
i,j)

1/2), ||X||∗ is the
nuclear norm (i.e. ||X||∗ =

∑r
i=1 σi(X), r = min{m,n}

and σi(X) is the ith eigen-values of X). Moreover, let In be

an identity matrix with size of n×n, X◦Y be the Hadamard
product of X and Y (i.e. [X ◦Y]i,j = [Xi,jYi,j ]). Matrix X
is called indicator matrix if all the entries in X are either 0 or
1.

2.2. Problem Formulation

Let Y ∈ RM×N be the grayscale natural image to be col-
orized, and P = [R,G,B] ∈ RM×3N be the color image
to be recovered with R, G and B ∈ RM×N being stacked
horizontally, where R, G and B are red, green and blue color
components respectively. The definition of P that composes
of R, G and B being stacked horizontally helps to leverage
the inter color correlation among the color components. Sup-
pose Y = α1R + α2G + α3B. Two common monochrome
image transforms in the literature are α1 = α2 = α3 = 1

3
(average) and α1 = 0.299, α2 = 0.587, α3 = 0.114 (YUV).
Let P′ ∈ RM×3N be the initial colorized version of image P
using color propagation (which will be elaborated in the next
subsection), N ∈ RM×3N be a noise matrix, W ∈ RM×3N

+

be the confidence matrix, whose elements represent the con-
fidence of the initial colorized chrominance values. The col-
orization problem can be formulated as

min
R,G,B,P,N,r

||W ◦N||2F (1)

subject to P = [R, G, B]

Y = α1R + α2G + α3B

P′ = P + N

rank(P) ≤ r

The second constrain can be rewritten as Y = PT, where

T = [α1IN , α2IN , α3IN ] (2)

As the actual rank of P is unknown, we relax the fourth
constrain by Lagrange multiplier λ, which serves as a balance
factor. Therefore, (1) can be rewritten as

min
P,N

||W ◦N||2F + λ · rank(P) (3)

subject to Y = PT

P′ = P + N



In (3), the objective function contains two terms. The
first term is the square of the Frobenius norm of element-wise
weighted entries in the noise matrix N, while the second term
penalizes the rank of matrix P, which leads to a singular solu-
tion. If the first term is replaced by l0-norm and the weighted
matrix W is an indicator matrix, the formulation (3) reduces
to [9]. Since the regularized rank minimization in (3) is NP-
hard, we relax the rank function with nuclear norm,

min
P,N

||W ◦N||2F + λ||P||∗ (4)

subject to Y = PT

P′ = P + N

The first constrain of (4) can be further relaxed by introduc-
ing the Lagrange multiplier η, and then we obtain a robust
formulation,

min
P,N

||W ◦N||2F + λ||P||∗ +
η

2
||Y −PT||2F (5)

subject to P′ = P + N

If η → ∞, (5) reduces to (4). With relaxation of (5), we
can handle cases that there are potential outliers in the known
monochrome image Y and noises in the given chrominance
values.

2.3. Color Propagation

In this subsection, the process of computing the initial col-
orized image P′ and the confidence matrix W that represents
the confidence of the initial colorized chrominance values are
introduced. Given a small portion of scattered chrominance
values and a monochrome image, we propagate those known
chrominance values to the unknown ones. The propagation
procedure is pixel-based. Let p be the pixel whose color is
unknown, q be the pixel whose color is going to be propa-
gated to p. We define a confidence term conf(p) ∈ (0, 1] for
each pixel p, then

conf(p) =

{
w(p) if w(p) ≥ Tprop
0 otherwise

(6)

R′(p) = R(q∗), G′(p) = G(q∗), B′(p) = B(q∗) (7)
w(p) = f(p, q∗), q∗ = max

q∈Ωp

f(p, q) (8)

f(p, q) = exp(−distt(p, q)
σ2
t

) · exp(−disti(p, q)
σ2
i

) (9)

where Ωp is the set of pixels whose chrominance values are
known, R, G, B are the three color components in P, R′,
G′, B′ are the three color components in P′, distt(p, q) is
the Chi-square distance local texture feature distribution be-
tween p and q, disti(p, q) is the Chi-square local intensity
distribution distance between p and q, σ2

t and σ2
i are prede-

fined constants. Texture feature distribution is calculated as

follows:
i) We firstly apply Gabor filters with increment π/8 from 0
to 7π/8 and five scales 0, 1, 2, 3, 4 to the whole grayscale
image.
ii) Each pixel has 40-dimensional texture feature after previ-
ous step. Those features are then grouped by k-means clus-
tering (k is set to be 128 empirically in this work). The cluster
centers are taken as codewords, such that each pixel is asso-
ciated with a codeword.
iii) The local texture feature distribution of a pixel is the dis-
tribution of codewords of a (2K+1)×(2K+1) patch whose
center is the current pixel.

The intensity distribution is computed in a similar way,
except that the input to the k-means clustering process is in-
tensity instead of Gabor feature. Chi-square distance between
two distribution a and b is defined as

dist(a,b) = 2

n∑
i=1

|a(i)− b(i)|
a(i) + b(i)

(10)

where n is the dimension of distribution a and b.
To accelerate the searching process, for each pixel p to be

colorized, we restrict Ωp to be the set of pixels whose color
are known and inside the window centered on p with size of
(2R+ 1)× (2R+ 1).

For each pixel with known color, its confidence value is
defined as 1 and its color components R′, G′, B′ are the same
as R, G, B. After that, all the confidence values of the image
together form a confidence matrix W′ ∈ RM×N , while the
propagated chrominance values form the initial color image
P′ ∈ RM×3N . The confidence matrix W in the previous
section is defined as

W = [cW′ cW′ cW′] (11)

where c is a nonnegative real number that scales the confi-
dence.

2.4. Solution via Iterative Convex Programming

Similar to [9], we introduce an auxiliary matrix A to decouple
P in the objective function so as to solve problem 5. There-
fore, problem 5 can be rewritten as

min
P,N,A

||W ◦N||2F + λ||P||∗ +
η

2
||Y −AT||2F (12)

subject to P′ = P + N

A = P

The augmented Lagrange multiplier method in [12] is
then applied to solve problem 12. The major difference of
variable updating between [9] and the proposed method is the
update of N. In our work, the update of N in each iteration is

∀i, j,Nk+1
i,j = (Θk

i,j + µk(P′i,j −Pk+1
i,j ))/(2W2

i,j + µk).



Fig. 2. 10 selected test images from Kodak PhotoCD.

3. EXPERIMENTAL RESULTS

In the section, we demonstrate the experimental results of our
work and compare them with results of [1]. Fig. 2 shows 10
test images from Kodak PhotoCD [13]. These images are
all of size 512×768 or 768×512. For each image, we ran-
domly remove 99.9% of chrominance. For the parameters in
our proposed method, we empirically set λ = 10, γ = 100
and c = 1. Though these parameters may not be optimal,
fortunately, from the experiments that have been done, our
proposed method is not sensitive to the parameters setting in
a wide range. To quantitatively assess the performance of dif-
ferent colorization algorithms, we adopt color peak signal-to-
noise ratio (CPSNR) as an objective measurement, which is
defined as follows:

CPSNR = 10log10

2552

MSE
(13)

MSE =
1

3MN

∑
C={R,G,B}

M∑
i=1

N∑
j=1

(C(i, j)−C′(i, j))2

(14)

where R, G, B are RGB components of the ground-truth im-
age, and R′, G′, B′ are RGB components of the recovered
image by colorization algorithm with grayscale image and a
small portion of scattered chrominance values as input.

Numerical results are tabulated in Table 1. It revels that,
with scattered color cues, our proposed method achieves su-
perior results in terms of CPSNR.

Image Method in [1] Proposed method
1 30.10 30.61
2 27.94 28.97
3 28.68 29.20
4 28.18 28.45
5 31.91 31.84
6 28.36 29.25
7 33.08 33.75
8 31.98 33.40
9 27.55 27.49

10 29.00 30.17

Table 1. Comparison of CPSNR between different coloriza-
tion methods.

(a) (b) (c)

Fig. 3. Comparison between different methods with test im-
age 1. (a) Input grayscale image and 0.1% chrominance val-
ues. (b) Result of the proposed method. (c) Result of the
method in [1].

Fig. 3 presents a visual comparison of different coloriza-
tion results. Although both two methods can recover the color
given sufficient labels, a close inspection at the recovered im-
ages reveals differences in intensity, chrominance details. For
the results obtained by [1], the colorized image looks blurred
and unnatural. This is because Levin et al.’s work is based on
the assumption that neighbouring pixels with similar inten-
sity should have similar colors, which does not always cor-
rect. For the results computed by our proposed method, the
recovered image looks better.

Notice that the proposed colorization method can be ap-
plied to video colorization, too. In this situation, all the video
frames are firstly separated into different groups. Then frames
in the same group are stacked horizontally to optimize as
a whole so that the inter correlation between them can be
exploited. Finally, colorization is performed to the stacked
frames. For other applications of the proposed method, one
of them is lossy image or video compression. For the encoder,
the grayscale image and a small portion of chrominance val-
ues are encoded. For the decoder, the encoded information
is decoded and the image or video is then recovered through
colorization.

4. CONCLUSIONS

In this paper, we focus on the problem of image colorization
which adds color onto a grayscale image. We tackle the col-
orization problem by color propagation and rank minimiza-
tion. We firstly propagate the input scattered chrominance
values to the grayscale pixels to be colorized based on lo-
cal similarity of natural image. By leveraging the local sim-
ilarity on natural images, the advantages of texture similarity
and intensity similarity can be combined. We then applies the
rank minimization framework that further exploits the redun-
dancy of natural image. Numerical and visual comparisons
show that our proposed method leads to colorization results
of high-quality.

5. REFERENCES

[1] A. Levin, D. Lischinski, D. and Y. Weiss, “Colorization
using optimization,” in Proc. ACM SIGGRAPH Conf.,



vol. 23, pp. 689-694, 2004.

[2] L. Yatziv ang G. Sapiro, “Fast image and video coloriza-
tion using chrominance blending,” IEEE Trans. on Image
Processing, vol. 15, pp. 1120-1129, 2006.

[3] X. Chen, D. Zou, Q. Zhao and P. Tan, “Manifold preserv-
ing edit propagation,” IEEE Trans. on Graphics, vol. 31,
2012.

[4] Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y.-Q. Xu, and
H.-Y. Shum, “Natural image colorization,” in Proc. 18th
Eurograph. Symp. Rendering, pp. 309-320, 2007.

[5] R. Gupta, Y.-S. Chia, D. Rajan, E. Ng and Z. Huang,
“Image colorization using similar images,” in Proc. 20th
ACM Int. Conf. on Multimedia, 2012.

[6] X. Liu, L. Wan, Y. Qu, T.-T. Wong, S. Lin, C.-S. Leung,
and P.-A. Heng, “Intrinsic colorization,” ACM Trans. on
Graphics, vol. 27, pp. 152:1-152:9, 2008.

[7] R. Irony, D. Cohen-Or, and D. Lischinski, “Colorization
by example,” in Proc. 16th Eurograph. Symp. Rendering,
pp. 201-210, 2005.

[8] J. Pang, O. C. Au, K. Tang and Y. Guo, “Image coloriza-
tion using sparse representation,” In Proc. 38th Int. Conf.
Acoust., Speech Signal Processing, 2013.

[9] S. Wang and Z. Zhang, “Colorization by matrix comple-
tion,” in Proc. Twenty-Sixth AAAI Conference on Artifi-
cial Intelligence, 2012.

[10] E. J. Cands and B. Recht. “Exact matrix completion via
convex optimization,” Found. of Comput. Math., pp. 9
717-772, 2008.

[11] E. J. Candes, X. Li, Y. Ma, and J. Wright. “Robust prin-
cipal component analysis?” Journal of ACM 58(1), pp.
1-37, 2009.

[12] Z. Lin, M. Chen and L. Wu, “The augmented lagrange
multiplier method for exact recovery of corrupted low-
rank matrices,” UIUC Technical Report UILU-ENG-09-
2215, 2009.

[13] R. Franzen, “Kodak lossless true color image suite,”
http://r0k.us/graphics/kodak/, 2012.


