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Abstract

With the increasing popularity of telehealth, it becomes critical to ensure that
basic physiological signals can be monitored accurately at home, with minimal
patient overhead. In this paper, we propose a contactless approach for monitoring
patients’ blood oxygen at home, simply by analyzing the radio signals in the room,
without any wearable devices. We extract the patients’ respiration from the radio
signals that bounce off their bodies and devise a novel neural network that infers a
patient’s oxygen estimates from their breathing signal. Our model, called Gated
BERT-UNet, is designed to adapt to the patient’s medical indices (e.g., gender,
sleep stages). It has multiple predictive heads and selects the most suitable head via
a gate controlled by the person’s physiological indices. Extensive empirical results
show that our model achieves high accuracy on both medical and radio datasets.

1 Introduction

Remote health monitoring and telehealth are increasingly popular because they reduce costs and
facilitate access to healthcare, particularly for people in remote locations [2]. Further, remote health
monitoring can track the long-term physiological state of a patient or an older person who lives
alone at home, and enable family and professional caregivers to provide timely help [6, 42, 13, 47].
Delivering such services, however, depends on the availability of solutions that continuously measure
people’s physiological signals at home, with minimal overhead to patients.

Oxygen saturation is an important physiological signal whose at-home monitoring would benefit
very old adults and individuals at high risk for low blood oxygen [29]. Oxygen saturation refers to
the amount of oxygen in the blood – that is the fraction of oxygen-saturated hemoglobin relative to
the total blood hemoglobin. Normal oxygen levels range from 94% to 100%. Lower oxygen can be
dangerous, and if severe, lead to brain and lung failure [10, 21].

Today, measuring oxygen saturation requires the person to wear a pulse oximeter on their finger, and
actively measure themselves. While pulse oximeters are very helpful, they can be impractical in
some at-home monitoring scenarios. In particular, old people in their late 80’s and 90’s are at high
risk for low blood oxygen [32], and should regularly monitor their oxygen. Many of them however
may suffer from dementia or cognitive impairment that prevent them from measuring themselves.
COVID and pneumonia patients recovering at home can suffer from delirium [17], which can affect
their reasoning and ability to measure their oxygen levels. Additionally, blood oxygen tends to drop
during sleep, making it particularly important to track oxygen overnight [33, 15]. Yet people cannot
actively measure themselves while asleep.

The above use cases motivate us to try to complement pulse oximetry with a new approach that can
work passively and continuously, assessing blood oxygen throughout the night without requiring the
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Figure 1: Left: Examples of respiration signals and corresponding blood oxygen saturation. Right:
Illustrations of the proposed models: (a) The backbone BERT-UNet model, which contains an encoder
E and a predictor F as the UNet structure, and a BERT module at the bottleneck of the UNet. (b)
The Gated BERT-UNet, where a gate G, controlled by the accessible variable v and the predicted
inaccessible variable û, is used to select among multiple predictive heads.

person to wear a sensor or actively measure themselves. Prior attempts at estimating blood oxygen
passively, without a wearable sensor, rely on cameras [27, 43, 44, 39, 3, 16]. For example, [27]
proposes a convolution neural network that analyzes a video of the person’s palm to estimate his/her
blood oxygen. While not requiring wearable sensors, it cannot work continuously since the user
cannot keep their hand in front of the camera for a long time. It also cannot operate in dark settings
and thus cannot monitor one’s oxygen during sleep. To bypass the limitations imposed by cameras,
we propose a different sensing modality, radio-frequency (RF) signals.

We propose to monitor oxygen saturation by analyzing the radio signals that bounce off a person’s
body. Recent research has demonstrated the feasibility of monitoring breathing, heart rate, and even
sleep stages by transmitting a very low power RF signal and analyzing its reflections off a person’s
body [1, 50]. The medical literature shows an inherent dependence and dynamic interaction between
the breathing signal and oxygen saturation [18, 4, 34]. Building on these advances, we use RF signals
to track a person’s breathing signal and train a neural network to infer oxygen from respiration.
Such a design can measure a person’s oxygen without any physical contact or wearable devices.
Thus, it does not burden the patient or interfere with their sleep. Using breathing as a mediator has
an additional side benefit. It would be very hard to collect a large dataset of radio signals and the
corresponding oxygen levels. Luckily however there are multiple large medical datasets that contain
continuous breathing signals paired with oxygen measurements. This allows us to train a model to
infer oxygen from breathing and test it directly on breathing extracted from radio signals.

While designing our model, motivated by personalized medicine, we aim for a model that can adapt
to the patient’s medical indices (e.g., gender, disease diagnoses). We observe that many medical
indices are binary or categorical. To leverage such variables, we propose Gated BERT-UNet, a new
transformer model that has multiple predictive heads. It selects the most suitable head for each person
via a gate controlled by the person’s categorical indices. We evaluate our model on medical and RF
datasets. Experiments show that our model’s average absolute error in predicting oxygen saturation is
1.3%, which is significantly lower than the state-of-the-art (SOTA) camera-based models [27].

2 Our System and Model (Gated BERT-UNet)

The proposed oxygen estimation solution operates in two steps: (1) Extracting breathing signals
from RF signals and (2) Estimating SpO2 from breathing signals. Please refer to Appendix B for the
details of step one. We focus on step two in this section.

We formulate the oxygen saturation prediction from respiration signals as a sequence-to-sequence
regression task. Figure 1 left shows an example of respiration signals and corresponding blood
oxygen saturation. The model takes the breathing signal x ∈ R1×fbT over a T -second interval and
predicts the oxygen time series y ∈ R1×foT over the same period, where fb and fo are the sampling
frequencies of respiration and oxygen, respectively. In this study, the default sampling rates for
respiration and oxygen are fb = 10Hz and fo = 1Hz.
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Table 1: Performances on medical datasets. (* indicates using extra physiological variables.)

Model SHHS MESA MrOS Overall
Corr↑ MAE↓ RMSE↓ Corr↑ MAE↓ RMSE↓ Corr↑ MAE↓ RMSE↓ Corr↑ MAE↓ RMSE↓

CNN 0.47 1.72 1.81 0.46 1.62 1.72 0.49 1.77 1.82 0.47 1.73 1.78
CNN-RNN 0.48 1.70 1.80 0.50 1.56 1.65 0.52 1.76 1.84 0.49 1.67 1.77
BERT-UNet 0.51 1.67 1.77 0.52 1.55 1.66 0.54 1.75 1.84 0.51 1.64 1.76

BERT-UNet + VarAug* 0.52 1.65 1.76 0.52 1.51 1.62 0.55 1.68 1.78 0.52 1.61 1.72
Gated BERT-UNet* 0.52 1.61 1.72 0.53 1.50 1.61 0.55 1.65 1.75 0.53 1.58 1.70

As shown in Figure 1(a), our backbone model is a combination of a BERT module [9] and UNet [38].
The BERT-UNet backbone consists of an encoder E and an oxygen predictor F . The encoder has
convolutional layers and bidirectional attention modules while the decoder is fully convolutional
and has skip-links from the encoder. The backbone is simply trained by L1 loss and correlation loss.
Please refer to Appendix C for the details of model architecture and loss functions.

Our full model, Gated BERT-UNet augments BERT-UNet with multiple predictive heads to adapt the
model’s prediction to different medical indices. It is important for boosting the model’s performance
since the relationship between breathing and oxygen saturation has been shown related to many
medical indices. For example, gender is an influential factor as men and women have differences in
their oxygen transport systems [36]. Another example is that sleep stage affects a person’s resting
oxygen levels [8].

To do the adaptation, our Gated BERT-UNet selects the most suitable head for a person via a gate
controlled by the subject’s categorical indices. Specifically, as shown in Figure 1(b), it has a gate
function G(v, u) : V × U → {1, 2, · · · , N} where v ∈ V and u ∈ U are accessible/inaccessible
variables, N is the number of gate statuses. We use the term accessible variable for variables easily
available during inference time (e.g., gender, race) and the term inaccessible variable for information
that is not available during inference, but available during training, like a person’s sleep stages. The
prediction for inaccessible variable is learned concurrently with the main task under full supervision.

The model has N heads {Fi}Ni=1 that adapt the prediction ŷi = Fi(E(x)) to the gate status. It
also has an extra predictor Fu to infer inaccessible variables u. During testing time, based on the
accessible variables v and estimated inaccessible variables û, we evaluate the gate status s = G(v, û).
Please see Appendix D for the details of (1) the loss function used to train our full model; (2) the
exact construction of the gate function G(v, u).

3 Experiments and Results

Dataset and Metrics. We conduct experiments on three medical datasets: SHHS [51], MrOS [5] and
MESA [7], and a self-collected RF dataset. We consider three evaluation metrics: correlation (Corr),
mean-absolute error (MAE) and rooted mean-squared error (RMSE). Please refer to Appendix E for
more details on datasets and metrics.

Baselines. We compare our model with the following baselines: (a) CNN, a fully convolutional
model; (b) CNN-RNN, an augmentation of CNN with RNN units in the bottleneck; (c) BERT-UNet
+ VarAug, which takes BERT-UNet as the backbone and uses medical variables as extra inputs or
outputs. Appendix F explains more details of the baselines.

Training and Evaluation Protocols. Since the RF dataset is too small for training, we train models
on breathing signals from the medical datasets, and test them directly on the respiration signals
extracted from the RF dataset as well as medical datasets’ test sets. More details are in Appendix G.

3.1 Results on Medical Datasets

Quantitative. The results on medical datasets are shown in Table 1. Since there is no past work that
predicts oxygen from breathing or radio signals, all models in the table refer to variants of our neural
network. The table shows that all variants achieve relatively low prediction errors with an average
MAE that ranges from 1.58 to 1.73 percent, and an average RMSE that ranges from 1.70 to 1.78
percent. Such a relatively low RMSE shows our model rarely has predictions that largely deviate
from the ground truth. All variants also achieve reasonable high correlations ranging from 0.47 to
0.53. Such a correlation level indicates our model’s prediction capture the dynamics of the ground
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Figure 2: An illustrative example of the oxygen level predicted by the BERT-UNet + VarAug (Orange
Curve), and our Gated BERT-UNet model (Blue Curve). The background color indicates sleep stages.
The ‘dark grey’, ‘light grey’ and ‘white’ corresponds to non-REM ‘Sleep’, ‘REM’ and ‘Awake’.

Table 2: Results on the RF dataset.
Model Corr↑ MAE↓RMSE↓

CNN 0.45 1.65 1.73
CNN-RNN 0.49 1.85 1.93
BERT-UNet 0.48 1.49 1.58

BERT-UNet + VarAug 0.49 1.49 1.59
Gated BERT-UNet 0.52 1.32 1.54

Gated BERT-UNet (Ours)

Ground Truth

Gated BERT-UNet (Ours)

Ground Truth

Figure 3: Example of SpO2 prediction results on RF dataset.

truth SpO2 which is also visually shown in Figure 2. These quantitative results highlight that our
system can be useful for continuous monitoring of patients’ oxygen at home.

The upper rows in the table show the variants that do not leverage side variables. The table shows
that the BERT-UNet model consistently outperforms the CNN model and the CNN-RNN model on
all datasets, in all metrics. This indicates that BERT-UNet is a preferable architecture for this task.

The bottom rows in the table show the results of models leveraging accessible and inaccessible
medical variables. The table shows that BERT-UNet + VarAug and Gated BERT-UNet outperform
models that do not leverage physiological indices, demonstrating the benefit of leveraging such
variables. In addition, Gated BERT-UNet outperforms VarAug on all three datasets, demonstrating
that a gated multi-head approach works best for such categorical side variables.

Qualitative. Figure 2 visualizes the predicted oxygen saturation of the Gated BERT-UNet model and
the VarAug model on a male subject in the SHHS dataset. As the ground-truth oxygen saturation
are integers, we round the predicted oxygen values. The background color indicates different sleep
stages. The ‘dark grey’, ‘light grey’ and ‘white’ correspond to non-REM ‘Sleep’, ‘REM’ and ‘Awake’
stage, respectively. We observe that Gated BERT-UNet consistently outperforms VarAug over the
whole night. The small panel focuses on different sleep stages. In general, different sleep stages tend
to show different behavior and hence the importance of using a gated model. Specifically, oxygen is
typically more stable during non-REM ‘Sleep’ than during REM and Awake stages. The figures show
that Gated BERT-UNet can track the ups and downs in oxygen and is significantly more accurate
than VarAug. This experiment demonstrates that the way we incorporate the sleep stages into the
model improves performance across different sleep stages.

3.2 Results on RF Dataset

The results on the RF dataset are shown in Table 2. All model variants have low prediction error
and high correlation. Among the models that do not leverage physiological variables, CNN-RNN
and Bert-UNet perform better than the vanilla CNN, which shows the importance of modeling
temporal information. When using physiological variables, the performance of BERT-UNet+VarAug
is similar to that of BERT-UNet, while Gated BERT-UNet is better than all other variants. This
demonstrates that the gating design leverages auxiliary variables better. Overall, the MAEs, RMSEs
and correlations on the RF dataset are comparable to those on the medical datasets. This indicates that
our model is directly applicable to respiration signals from RF. We have also visualized the prediction
results in Figure 3. As shown, our model can accurately track the fluctuation of ground truth SpO2.
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Figure 4: Examples of breathing signals and corresponding predicted oxygen saturation. (a) is an
example of normal breathing signals. (b)(c) are examples of different abnormal breathing signals. In
each figure, the first row shows the breathing signals while the second row shows the ground truth
oxygen saturation (in blue) and the oxygen saturation predicted by our model (in orange).

Table 3: Prior SOTA oxygen saturation prediction methods [11, 27] v.s. our Gated BERT-UNet.
Method Corr↑ MAE↓ RMSE↓ Contactless

Ding et al. 2018 0.26 2.43 2.85 No
Mathew et al. 2021 0.46 1.97 2.16 Yes

Ours 0.52 1.32 1.54 Yes

3.3 Visualization of Breathing-Oxygen Patterns

We demonstrate several visual results on different patterns of breathing signals and the corresponding
ground truth/predicted oxygen saturation, as shown in Figure 4. Figure 4(a) shows a normal breathing
pattern, which leads to constant oxygen saturation. In contrast, Figure 4(b,c) present two different
abnormal breathing signals and the resulting fluctuated oxygen predictions. These figures show the
diversity of the oxygen and breathing patterns as well as the complexity of their relationship. The
model however is able to capture this relationship for highly diverse patterns.

3.4 Comparison with Past Works

We compare our approach with two recent deep-learning camera-based SpO2 monitoring methods.
The first method [11] asks the user to press his/her finger against a smartphone camera, and uses a
CNN to estimate SpO2 from the video. The second method [27] uses a CNN to estimate oxygen from
a video of the person’s hand. The input of these systems is different from ours (camera vs. RF); so to
compare them we follow the setup in [27]. In their setting, test samples are 180-240 seconds and vary
between normal breathing to no or minimal breathing. Similarly, we divide the RF test dataset into
non-overlapping 240-second segments containing both regular breathing and shallow breathing (i.e.,
apnea or hypopnea) and compute metrics on them. Table 3 reports the output of the three models.
The results of the baselines are taken from [27], and the results of our RF-based model are computed
as described. The results show that our model improves the correlation and reduces the MAE and
RMSE in comparison to past work.

More results are in the appendix: Section H analyzes (predicted) oxygen value distributions in
different race groups; Section I has more visualization on our model’s performance on different
datasets, patients with different relevant diseases.

4 Concluding Remarks

This paper introduces the new task of inferring oxygen saturation from radio signals. It develops
a new gated transformer architecture to deliver this application and adapt deep models to auxiliary
categorical variables. We note the work have some limitations. First, the paper focuses on special
use cases (e.g., at-home oxygen monitoring in very old adults or during sleep), but is not suitable for
other use cases (e.g., measuring oxygen to optimize performance during exercise). Second, the results
in the paper provide an initial proof of concept that the shape and dynamics of the breathing signal
include sufficient clues to infer a useful estimate of oxygen saturation. However, before this system
can be used in clinical care, one needs clinical studies to quantify the performance for different
disease conditions.
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A Related Work

Monitoring Oxygen Saturation. The most accurate measurements of oxygen saturation are
invasive and require arterial blood samples. The non-invasive and widely-used method for measuring
oxygen saturation (SpO2) uses a pulse oximeter, a small device worn on the finger. To enable remote
SpO2 measurements, past work has investigated the use of cameras [43, 44, 39, 3, 16]. However
those methods have limitations like susceptibility to noise, sensitivity to motion, and a need for
ambient light. Recently, deep learning has been considered to aid SpO2 monitoring using cameras.
[11] tried to monitor SpO2 using smartphones. But their solution requires the fingertip to be pressed
against the camera, and hence cannot provide continuous overnight measurements. A more recent
work [27] has estimated SpO2 in a contactless way with regular RGB cameras. Their method first
extracts the region of interest from the video of the person’s palm, then uses a CNN model to estimate
SpO2. While this approach is contactless, it still requires the user to keep their hand in front of the
video camera for the duration of the monitoring, which is not practical for continuous or overnight
monitoring. Our work differs from all of these prior works in that we predict oxygen values from
breathing or radio waves, which allows for continuous oxygen sensing in a contactless and passive
manner.

Contactless Health Sensing with Radio Signals. The past decade has seen a rapid growth in
research on passive sensing using RF signals. Early work has demonstrated the possibility of sensing
one’s breathing and heart rate using radio signals [1]. Later, researchers have shown that by analyzing
the RF signals that bounce off the human body, they can monitor a variety of health metrics including
sleep, gait, falls, and even human emotions [53, 19, 42, 52, 12, 25, 47, 24]. We build on this work to
enable SpO2 monitoring with radio waves.

Adaptation of ML Models to Medical Indices. Prior deep learning models [46, 45, 23, 49, 48] do
not adapt to a person’s medical indices. For example, the literature has models that infer sleep stages
from respiration [53], detect arrhythmia from ECG [20], and classify emotion from EEG signals [30].
A recent survey [37] collected 147 papers about learning with physiological signals. None of the
deep models therein adapt to a person’s medical indices. The deep learning literature includes a few
approaches for leveraging auxiliary variables. If the variable is available at inference time, typically
it is taken as an extra input [31, 40]. Variables accessible only during training are typically used
as extra supervisors to regularize the model via multi-task learning [26, 28]. We propose a gating
mechanism to handle categorical variables and show that it performs better.

B Extracting Breathing Signals from RF Signals

We leverage past work on extracting breathing from the RF signals. Specifically, our system is
equipped with a multi-antenna Frequency-Modulated Continuous-Wave (FMCW) radio, which is
commonly used in passive health monitoring [35, 50, 13]. The radio transmits a very low power
RF signal and captures its reflections from the environment. We process these reflections using the
algorithm in [50] to infer the subject’s breathing signal. Past work shows that breathing signals
extracted in this manner are highly accurate. Specifically, their correlation with an FDA-approved
breathing belt on the person ranges from 91% to 99%, depending on the distance from the radio and
the distance between people [50].

C Backbone Model: BERT-UNet

Our backbone model a combination of a BERT module [9] and UNet [38]. As shown in Figure 1(a),
our BERT-UNet model consists of an encoder E(·; θe) and an oxygen predictor F (·; θf ). The encoder
is composed of a fully convolutional network (FCN) followed by a bidirectional-transformer (BERT)
module [9]. The FCN extracts local features from the raw respiration signals, then the BERT module
captures long-term temporal dependencies based on those features. The predictor F is composed of
several deconvolutional layers, which up-sample the extracted features to the same time resolution of
oxygen saturation. Formally, we have E : R1×fbT → Rn×αfbT and F : Rn×αfbT → R1×foT where
n is the dimension of the respiration feature and α is the down-sampling factor (α = 1/240 in our
experiments).
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The model is trained with a combination of the L1 loss and the correlation loss given below:

L(ŷ, y) = ∥ŷ−y∥1

foT
− λ

∑
i(ŷ

i−µŷ)(y
i−µy)√∑

i(ŷ
i−µŷ)2

∑
i(y

i−µy)2
. (1)

Here ŷ = F (E(x; θe); θf ) is the model prediction, y is the ground truth oxygen, µy and µŷ are the
mean values of y and ŷ, and λ is a hyper-parameter to balance the two loss terms. We choose the L1

loss over other regression loss functions, since it is more robust to outliers and empirically has better
performance. We also use the correlation loss to help in matching the fluctuations in the predicted
oxygen with the fluctuations of the ground truth.

Architecture Specifications. The encoder has nine 1-D convolutional layers (Conv-BatchNorm-
RReLU) that shrink the features’ temporal dimension by 240 times. It is then followed by several
bi-directional multi-head self-attention layers (BERT) [9] to aggregate the temporal information
at the bottleneck. We use 8 layers, 6 heads with hidden-size of 256, intermediate-size of 512 for
self-attention, and the max position embeddings is 2400. The decoder contains 7 layers of 1-D de-
convolutional layers (DeConv-Norm-RReLU). We also use a skip connection [38] by concatenating
the convolutional layers in the encoder to the de-convolutional layers in the predictor. Figure 5
illustrates the overall network architecture.

Conv Conv Conv Conv Conv Conv
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Figure 5: Network architecture for the backbone BERT-UNet model.

D Full Model: Gated BERT-UNet

In medical applications, there are useful side variables. Adapting to such variables will likely improve
performance and make the results more personalized. In many cases, the relevant variables are binary
or categorical. For example, the relevant variables for oxygen saturation include gender, whether the
person is a smoker, whether they have asthma, etc. The categorical nature of these variables induces
discontinuity in the learned function over the physiological indices. Specifically, consider oxygen
saturation y = gs(x) as a function of respiration x and gender s (0 for male and 1 for female). g0(x)
and g1(x) can be two different functions since men and women have differences in their oxygen
transport systems [36].

To handle such discontinuity for better leveraging the categorical variables, we propose Gated BERT-
UNet, a new model that augments BERT-UNet with multiple predictive heads. It selects the most
suitable head for a person via a gate controlled by the subject’s categorical indices. The model
supports both variables available at the time of inference (e.g., gender), as well as dense categorical
variables concurrently learned from the input signals (e.g., sleep stages).

11



Figure 1(b) illustrates the model. It has a gate function G(v, u) : V × U → {1, 2, · · · , N} where
v ∈ V and u ∈ U are accessible/inaccessible variables, N is the number of gate statuses. We use the
term accessible variable for variables easily available during inference time, e.g., gender, and the
term inaccessible variable for information that is not available during inference, but available during
training, like a person’s sleep stages. Inaccessible variables are typically dense time series (e.g., sleep
stages). Their prediction are learned concurrently with the main task under full supervision. The
construction of the gate function G(v, u) is described in the next sub-section.

The model has N heads {Fi}Ni=1 that adapt the prediction ŷi = Fi(E(x)) to the gate status. It
also has an extra predictor Fu to infer inaccessible variables u. During testing time, based on the
accessible variables v and estimated inaccessible variables û, we evaluate the gate status s = G(v, û).

In the case of oxygen prediction, ŷi and the gate status s are time series. As shown in Figure 1(b),
the final prediction at each time step, is the gated combination of every head’s output, i.e. ∀t =
1, . . . , foT, ŷ

t =
∑N

i=1 1[s
t = i]ŷti . We train Gated BERT-UNet (GBU) with the following loss,

LGBU(ŷ, û, y, u) = L(ŷ, y) + λu

foT

foT∑
t=1

LCE(û
t, ut), (2)

where L is the main loss defined in Equation 1, LCE is the cross-entropy loss to train the branch for
predicting inaccessible variables and λu is a balancing hyperparameter.

Mapping Variables to Heads. The number of heads in a Gated BERT-UNet model puts an upper
bound on the number of possible gate states. For example, if the model has 6 heads, the gate can take
only 1 of 6 states. Typically, we have many more variable states than gate states. To find a proper
mapping G(v, u) from variable state to gate state, we rely on gradient similarity. For example, if
we want to check whether male smokers should be in the same group as female smokers, we take a
pretrained backbone BERT-UNet and compute its averaged gradient (w.r.t the loss function) over all
male smokers and all female smokers in the dataset. Then we check the cosine similarity between the
two gradients. If the gradients are similar, which means the two categories move the loss function in
the same direction, we can use the same predictor for them. On the other hand, if the gradients are
vastly different, it is preferable to separate such categories and assign them to different gate statuses.

E Datasets and Metrics

Medical Datasets. We leverage three public medical datasets: Sleep Heart Health Study
(SHHS) [51], Multi-Ethnic Study of Atherosclerosis (MESA) [7], and Osteoporotic Fractures in
Men Study (MrOS) [5]. The datasets were collected during sleep studies. For each subject, they
include the respiration signals throughout the night along with the corresponding blood oxygen time
series. The breathing signals are collected using a breathing belt around the chest or abdomen, and
the oxygen is measured using a pulse oximeter. The datasets also contain side variables including
sleep stages, which for every time instance assign to the subject one of the following: Awake, Rapid
Eye Movement (REM) or non-REM stage.

We note that the subjects in these studies have an age range between 40 and 95, and some of them
suffer from a variety of diseases such as chronic bronchitis, cardiovascular diseases, and diabetes.
This allows for a wider range of oxygen variability beyond the typical range of healthy individuals.

Radio Device

Figure 6: The radio device to
collect RF signals.

RF Datasets. We collected a dataset of RF signals paired with
SpO2 measurements. The data is collected from two sleep labs. In
total, there are 400 hours of data from 49 overnight recordings of
32 subjects. The dataset contains subjects of different genders and
races. Some subjects are healthy volunteers while others are patients
with sleep problems. Thus, the ground truth oxygen saturation
distribution is wider than normal ranges. A radio device is installed
in the room to collect RF signals, as shown in Fig. 6. The radio
signals are synchronized with the SpO2 measurements and processed
with the algorithm in [50] to extract the person’s breathing signals.
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Metrics. Let ŷ, y denote the predicted and ground truth oxygen saturation. Following the previous
work [27], we use three standard metrics for evaluation: (1) Correlation:

∑
t(y

t−µy)(ŷ
t−µŷ)√∑

t(y
t−µy)2

∑
t(ŷ

t−µŷ)2
,

where µy and µŷ are the averaged oxygen saturations; (2) MAE: 1
T

∑T
t=1 |yt − ŷt|; and (3) RMSE:√

1
T

∑T
t=1(y

t − ŷt)2. The models take a night of breathing as input and predict the corresponding oxygen
levels. During the evaluation, we divide the model’s prediction and ground truth oxygen into 240-
second segments to compute the metrics. We note that those metrics are sensitive to the segment’s
length. For a fair comparison, we follow [27] and use 240-second intervals.

F Baselines.

We compare the following neural network architectures for our backbone model: (a) CNN is a fully
convolutional model composed of eight 1-D convolutional layers and seven 1-D deconvolutional
layers; (b) CNN-RNN augments the CNN model with a recurrent unit (one layer LSTM) in the
bottleneck to better captures the long-term temporal relationships of the data. (c) BERT-UNet further
makes two improvements on the CNN-RNN model. First, it uses an attention module to replace
recurrent unit for temporal modelling. Second, it adds skip links between encoding convolutional
layers and decoding deconvolutional layers at the same temporal scale to better capture the signal’s
local information.

To evaluate our design for incorporating side information, we compare the following models: (a)
BERT-UNet + VarAug, which uses BERT-UNet as backbone and takes accessible variables as extra
inputs and inaccessible variables as auxiliary tasks. (b) Our Gated BERT-UNet model, which uses a
multi-head model gated by physiological variables.

G Training and Evaluation Protocols

Train/Valid/Test Spilt. Due to the limited data amount in the RF dataset, the RF data is all hold
out for testing. In our study, all models are trained on the medical datasets and evaluated on both the
medical datasets and the RF dataset. Collectively, the medical datasets have about 48,000 hours of
data from 5,765 subjects in total. We randomly split subjects, 70% for training and validation, and
30% for testing, and fix the splits in all experiments. We train each model on the union of the training
sets from the three medical datasets, and tested on each test set.

Side Variable Specifications. For models that incorporate side variables, we use gender as the
accessible variable and sleep stages as the inaccessible variable. In Gated BERT-UNet, we use
gradient similarity to map gate status as described in the method section, which results in the
following 6 categories: (male, awake), (male, REM sleep), (male, non-REM sleep), (female, awake),
(female, REM sleep), (female, non-REM sleep). The sleep stages themselves are learned from the
input since they are an inaccessible variable. In the baseline VarAug, the gender variable is provided
as an additional input and the sleep stages are used as an auxiliary task in a multitask model.

Implementation Details. We implement all models in PyTorch. All experiments are carried out
on a NVIDIA TITAN Xp GPU with 12 GB memory. The number of parameters for the Gated
BERT-UNet model is 26,821,113 and the model size is 107.28MB. In the training process, we use
the Adam optimizer with a learning rate of 2× 10−4, and train the model for 500 epochs. Due to the
varying input length, we set the batch size for all models to 1 (i.e., one night of respiration signal and
the corresponding oxygen time series).

H Results for Different Skin Colors

Since pulse oximeters rely on measuring light absorbance through the finger, they are known to
be affected by skin color and tend to overestimate blood oxygen saturation in subjects with dark
skin [14, 41]. A large study that looked at tens of thousands of white and black COVID patients
found that the “reliance on pulse oximetry to triage patients and adjust supplemental oxygen levels
may place black patients at increased risk for hypoxaemia" [41]. In contrast, breathing and RF signals
have no intrinsic bias against skin color. Figure 7 shows the distributions of the oximetry-based
ground-truth oxygen and the Gated BERT-UNet prediction for different races, for the union of all
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Figure 7: Box plot compares the ground-truth oxygen saturation measured by pulse oximeter and our
predicted oxygen saturation for two races.

datasets. The ground-truth measurements from oximetry show a clear discrepancy between black and
white subjects. In particular, black subjects have higher average blood oxygen. This is compatible
with past findings that pulse oximeters overestimate blood oxygen in dark-skinned subjects [14]. In
contrast, the breathing-based oxygen prediction corrects or reduces this bias, and shows more similar
oxygen distributions for the two races.

I Extra Results

I.1 Example of Same Breathing Rate but Different Oxygen Level

One might wonder whether our model predicts oxygen merely by the breathing frequency. We show
it is not the case. Our model understands that the same breathing frequency does not translate to
the same oxygen level. Figure 8 shows two people breathing at the same frequency of 14 BPM, but
the model correctly realizes that one of them has high and stable oxygen of 98 while the other has
a relatively low oxygen level of 93. The model even follows the dynamic change in their oxygen
levels from one second to the next. This is possible because the model analyzes the full details
of the breathing signal and its dynamics, which is a dense 1D input, not just one variable like the
rhythm. To see that, consider again the example in Figure 8. While the two people breathe at the
same frequency, the person whose breathing is plotted in blue suddenly starts taking deeper breaths.
This is an indication that the person is low on oxygen and is trying to increase his oxygen intake.
When the person takes such deep breaths, the oxygen level increases. In contrast, the person whose
oxygen is plotted in orange is not struggling with low oxygen and his breathing is steady.

Breathing Signals:
(Our Model’s Input)

Oxygen Levels:
(Our Model’s Output 
and Ground Truth)

Breathing Rates:
(Not Our Input)

98

96
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92
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Figure 8: Example of same breathing rate but different oxygen saturation.
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Figure 9: MESA Example 1.

I.2 Qualitative Results in Different Datasets

We include more visualizations of the breathing signals and the corresponding oxygen saturation
predicted by the Gated BERT-UNet model for the medical datasets: MESA (Figure 9 and Figure 10),
MrOS (Figure 11 and Figure 12). We also visualize the model’s prediction on unhealthy subjects
with various diseases including chronic obstructive pulmonary disease (COPD), asthma, diabetes. In
the plots, The background color indicates different sleep stages. The ‘dark grey’, ‘light grey’ and
‘white’ correspond to ‘Non-REM sleep’, ‘REM’ and ‘Awake’, respectively.
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Figure 10: MESA Example 2.

MESA. The example in Figure 9 shows our model’s ability to capture the fluctuations of oxygen
saturation. At the same time, the example in Figure 10 shows that our model accurately detects the
region of low oxygen saturation, which highlights its usefulness in monitoring patients.

MrOS. From the zoomed-in regions (a) and (b) in Figure 11, we see that the model exhibits a larger
error when the ground truth SpO2 reading is very low. It is mainly caused by the imbalanced labels
in the training set since subjects usually experience much less time of having low oxygen level (e.g.,
below 90%) than having a normal oxygen level between 94% to 100%. Figure 12 shows another
example of the dynamics. As shown in the zoomed range, oxygen fluctuations correlate with one’s
sleep stage: in ‘REM’ (colored by light gray), the oxygen fluctuates drastically while in ‘Non-REM
sleep’ (colored by dark gray), the oxygen is much more stable and fluctuates in a small range. Our
model makes accurate predictions since it leverages the sleep stage information.
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Figure 11: MrOS Example 1.
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Figure 12: MrOS Example 2.

I.3 Results for Relevant Diseases

As we mentioned earlier, using breathing as the input to the neural network model allows us to both
train and test on large respiration dataset from past sleep studies. Since these datasets contain diverse
people with a variety of diseases, it makes it possible to check how the model generalizes to unhealthy
individuals. Particularly we are interested in diseases that interact with oxygen saturation including
pulmonary diseases such as chronic obstructive pulmonary disease (COPD), chronic bronchitis,
asthma, emphysema, and others like diabetes and coronary heart disease.

Diabetes is a disease in which the patient’s blood sugar levels are too high. Research has shown
that diabetes is a risk factor for severe nocturnal Hypoxemia in obese patients [22]. Further diabetic
patients tend to have 3% to 10% lower lung volumes than adults without the disease. Figure 13 shows
an example of a diabetic patient who has an oxygen level that keeps oscillating between 85% and
95%. From the zoomed-in region, we can see our model captures the oscillating oxygen dynamics
and accurately predicts the oxygen values.

Chronic obstructive pulmonary disease (COPD) refers to a chronic inflammatory lung disease that
obstructs airflow from the lungs. Severe COPD can cause hypoxia, an extremely low oxygen level.
Figure 14 shows an example of a COPD patient who experiences several oxygen droppings during
the REM period (indicated by the orange box). As we can see, our model successfully predicts the
events of oxygen dropping.
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Figure 13: Diabetes Patient Example. The first row shows the full-night oxygen saturation, while
the second row zooms into the first row’s orange box region. The black and blue curves are the
ground-truth oxygen and our prediction. The background color indicates the subject’s sleep stages.
The dark grey, light grey and white corresponds to Sleep, REM and Awake respectively.

Chronic bronchitis refers to long-term inflammation of the bronchi. Chronic bronchitis patients can
have shortness of breath which affects oxygen levels. Figure 15 is an example of a chronic bronchitis
patient whose oxygen level keeps osculating between normal and low during the night. Our model
captures the trend well.

Asthma is a condition in which a person’s airways narrow, swell, and produce extra mucus. An
asthma patient’s oxygen levels can be irregular due to the breathing difficulty caused by the disease.
As shown in the example in Figure 16, the patient has a normal oxygen level for most of the time,
but the oxygen occasionally drops to low levels. Our model works well on detecting those abnormal
oxygen levels from the person’s respiration.

Emphysema refers to a lung condition in which the air sacs in the person’s lung are damaged. Patients
with emphysema usually have breathing issues that affect oxygen saturation. Figure 17 shows an
example of an emphysema patient. The patient experiences a long period of low oxygen during sleep
(as highlighted by the orange box). Our model successfully predicts such unusual oxygen dynamics.

Coronary heart disease develops when the arteries of the heart are too narrow to deliver enough
oxygen-rich blood to the heart. A deficiency in providing oxygen-rich blood can lead one’s oxygen
saturation to deviate from normal level. Figure 18 is an example of a person with coronary heart
disease who experiences several severe oxygen drops during sleep. Our model accurately tracks their
oxygen level and detects the oxygen reduction events.
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Figure 14: Chronic Obstructive Pulmonary Disease (COPD) Patient Example. The first row shows the
full-night oxygen level, while the second row zooms into the first row’s orange box region. The black
and blue curves are the ground-truth oxygen and our prediction. The background color indicates the
subject’s sleep stages. The dark grey, light grey and white means Sleep, REM and Awake.
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Figure 15: Chronic Bronchitis Patient Example. The first row shows the full-night oxygen saturation,
while the second row is a zoomed-in visualization of the orange box region in the first row. The black
and blue curves are the ground-truth oxygen and our prediction. The background color indicates the
subject’s sleep stages. The dark grey, light grey and white means Sleep, REM and Awake.

J Concluding Remarks

This paper introduces the new task of inferring oxygen saturation from radio signals. It develops
a new gated transformer architecture to deliver this application and adapt deep models to auxiliary
categorical variables. We note the work have some limitations. First, the paper focuses on special
use cases (e.g., at-home oxygen monitoring in very old adults or during sleep), but is not suitable for
other use cases (e.g., measuring oxygen to optimize performance during exercise). Second, the results
in the paper provide an initial proof of concept that the shape and dynamics of the breathing signal
include sufficient clues to infer a useful estimate of oxygen saturation. However, before this system
can be used in clinical care, one needs clinical studies to quantify the performance for different
disease conditions.
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Figure 16: Asthma Patient Example. The first row shows the full-night oxygen saturation, while the
second row is a zoomed-in visualization of the orange box region in the first row. The black and blue
curves are the ground-truth oxygen and our prediction. The background color indicates the subject’s
sleep stages. The dark grey, light grey and white means Sleep, REM and Awake.

Ground-Truth

Bert-UNet-GNP (Ours)

Ground-Truth

Bert-UNet-GNP (Ours)Gated BERT-UNet (Ours)

Ground-Truth

Gated BERT-UNet (Ours)

Ground-Truth

Figure 17: Emphysema Patient Example. The first row shows the full-night oxygen saturation, while
the second row is a zoomed-in visualization of the orange box region in the first row. The black and
blue curves are the ground-truth oxygen and our prediction. The background color indicates the
subject’s sleep stages. The dark grey, light grey and white means Sleep, REM and Awake.
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Figure 18: Coronary Heart Disease Patient Example. The first row is the full-night oxygen saturation
prediction results, where the black curve indicates the ground-truth oxygen saturation and the blue
curve indicates our predicted oxygen saturation. The second row is the zoom-in version of the orange
box region in the first row. The background color indicates sleep stages. The dark grey, light grey
and white corresponds to non-REM Sleep, REM and Awake, respectively.
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