

1. INTRODUCTION

Integration Problem:

$$I(f) := \int_{[0,1]^d} f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}$$

Equal-weight Approximation:

$$Q(f) := \frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{x}_i)$$

Our Contributions:

- We propose a simple and efficient closed-form method for rank-1 lattice construction, which does not require the timeconsuming exhaustive computer search that previous rank-1 lattice algorithms rely on.
- A side product is a closed-form method to generate QMC points set on sphere \mathbb{S}^{d-1} with bounded mutual coherence.

2. CONSTRUCTION OF OUR RANK-1 LATTICE **Construction Formula:**

$$x_i := \frac{iz \mod n}{n}, i \in \{0, ..., n-1\}.$$

where $\boldsymbol{z} \in \mathbb{Z}^d$ is the generating vector.

Closed-form Generating vector:

 $m{z} = [g^0, g^{rac{n-1}{2d}}, g^{rac{2(n-1)}{2d}}, \cdots, g^{rac{(d-1)(n-1)}{2d}}] ext{ mod } n$

where *g* is a primitive root modulo a prime number *n*.

3. PROPERTIES OF OUR RANK-1 LATTICE

Property 1: Regular Distance Pattern

Theorem 1 Suppose n is a prime number and 2d|(n-1). Let g be a primitive root of n. Let $z = [g^0, g^{\frac{n-1}{2d}}, g^{\frac{2(n-1)}{2d}}, \cdots, g^{\frac{(d-1)(n-1)}{2d}}] \mod n.$ Construct a rank-1 lattice $X = \{x_0, \cdots, x_{n-1}\}$ with $x_i = \frac{iz \mod n}{n}, i \in \mathbb{C}$ $\{0, ..., n-1\}$. Then, there are $\frac{n-1}{2d}$ distinct pairwise toroidal distance values among X, and each distance value is taken by the same number of pairs in X.

Remark: Our subgroup-based rank-1 lattice has a more regular pattern with fewer distinct pairwise distance values.

Property 2: Bounded Toroidal Distance

Theorem 2 Suppose n is a prime number and $n \geq 2d + 1$. Let $\boldsymbol{z} =$ $[z_1, z_2, \cdots, z_d]$ with $1 \leq z_k \leq n-1$. Construct a rank-1 lattice X = $\{x_0, \cdots, x_{n-1}\}$ with $x_i = \frac{iz \mod n}{n}, i \in \{0, ..., n-1\}$ and $z_i \neq z_j$. *Then, the minimum pairwise toroidal distance can be bounded as*

$$\frac{d(d+1)}{2n} \leq \min_{\substack{i,j \in \{0,\cdots,n-1\}, i \neq j \\ 6n}} \|\mathbf{x}_i - \mathbf{x}_j\|_{T_1} \leq \frac{(n+1)d}{4n}$$
$$\frac{\sqrt{6d(d+1)(2d+1)}}{6n} \leq \min_{\substack{i,j \in \{0,\cdots,n-1\}, i \neq j \\ i,j \in \{0,\cdots,n-1\}, i \neq j}} \|\mathbf{x}_i - \mathbf{x}_j\|_{T_2} \leq \sqrt{\frac{(n+1)d}{12n}},$$

where $\|\cdot\|_{T_1}$ and $\|\cdot\|_{T_2}$ denote the l_1 -norm-based toroidal distance and the l_2 -norm-based toroidal distance, respectively.

SUBGROUP-BASED RANK-1 LATTICE QUASI-MONTE CARLO

YUEMING LYU¹, , YUAN YUAN², , IVOR W. TSANG¹ ¹AUSTRALIAN ARTIFICIAL INTELLIGENCE INSTITUTE, UNIVERSITY OF TECHNOLOGY SYDNEY, ²CSAIL, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Figure 3: Mean approximation error over 50 independent runs. Error bars are with in $1 \times$ std

7. EXPERIMENTAL RESULTS

Experiment 1: Comparison of the minimum *l*₂-norm-based toroidal distance of rank-1 lattice constructed by different methods.

d=50		n=101	401	601	701	1201	1301	1601	1801	1901	2801
	SubGroup	2.0513	1.9075	1.9469	1.9196	1.8754	1.8019	1.8008	1.8709	1.7844	1.7603
	Hua	1.7862	1.7512	1.7293	1.7049	1.7326	1.6295	1.6659	1.6040	1.5629	1.5990
	Korobov	2.0513	1.9075	1.9469	1.9196	1.8754	1.8390	1.8356	1.8709	1.8171	1.8327
d=100		401	601	1201	1601	1801	2801	3001	4001	4201	4801
	SubGroup	2.8342	2.8143	2.7077	2.7645	2.7514	2.6497	2.6337	2.6410	2.6195	2.5678
	Hua	2.5385	2.5739	2.4965	2.4783	2.4132	2.5019	2.4720	2.4138	2.4537	2.4937
	Korobov	2.8342	2.8143	2.7409	2.7645	2.7514	2.6956	2.6709	2.6562	2.6667	2.6858
d=200		401	1201	1601	2801	4001	4801	9601	12401	14401	15601
	SubGroup	4.0876	3.9717	3.9791	3.8425	3.9276	3.8035	3.7822	3.8687	3.6952	3.8370
	Hua	3.7332	3.7025	3.6902	3.6944	3.7148	3.6936	3.6571	3.5625	3.6259	3.5996
	Korobov	4.0876	3.9717	3.9791	3.9281	3.9276	3.9074	3.8561	3.8687	3.8388	3.8405
d=500		3001	4001	7001	9001	13001	16001	19001	21001	24001	28001
	SubGroup	6.3359	6.3769	6.3141	6.2131	6.2848	6.2535	6.0656	6.2386	6.2673	6.1632
	Hua	5.9216	5.9216	5.9215	5.9215	5.9216	5.9216	5.9215	5.9215	5.8853	5.9038
	Korobov	6.3359	6.3769	6.3146	6.2960	6.2848	6.2549	6.2611	6.2386	6.2673	6.2422

Experiment 2: Time Comparison of Korobov searching and our sub-group rank-1 lattice.

d=500	SubGroup Korobov	n=3001 0.0185 34.668	4001 0.0140 98.876	7001 0.0289 152.86	9001 0.043 310.13	13001 0.0386 624.56	16001 0.0320 933.54	19001 0.0431 1308.9	21001 0.0548 1588.5	24001 0.0562 2058.5	28001 0.0593 2815.9
d=1000	SubGroup Korobov	n=4001 0.0388 112.18	16001 0.0618 1849.4	24001 0.1041 4115.9	28001 0.1289 5754.6	54001 0.2158 20257	70001 0.2923 34842	76001 0.3521 43457	88001 0.4099 56798	90001 0.5352 56644	96001 0.5663 69323

Experiment 3: Comparison of our subgroup-based rank-1 lattice with other baselines on integral approximation problems.

Figure 4: Mean approximation error over 50 independent runs.error bars are with in $1 \times$ std.

8. CONCLUSION

- We proposed a closed-form subgroup-based rank-1 lattice for integral approximation without computer searching. Our subgroup rank-1 lattice has few different pairwise distance values, which is more regular to be evenly spaced.
- In addition, we propose a closed-form method to generate QMC points set on sphere \mathbb{S}^{d-1} . We proved upper bounds of the mutual coherence of the generated points.
- Our subgroup-based rank-1 lattice and QMC on sphere \mathbb{S}^{d-1} can be used for Bayesian inference, kernel approximation, generative models training, and the approximation of Wasserstein distance. It may also be able to combine with sequential adaptive MC to improve performance.