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1. INTRODUCTION
Integration Problem:

I(f) :=

∫
[0,1]d

f(x)dx

Equal-weight Approximation:

Q(f) :=
1

n

n∑
i=1

f(xi)

Our Contributions:

• We propose a simple and efficient closed-form method for
rank-1 lattice construction, which does not require the time-
consuming exhaustive computer search that previous rank-1
lattice algorithms rely on.

• A side product is a closed-form method to generate QMC
points set on sphere Sd−1 with bounded mutual coherence.

2. CONSTRUCTION OF OUR RANK-1 LATTICE

Construction Formula:

xi :=
iz mod n

n
, i ∈ {0, ..., n− 1}.

where z ∈ Zd is the generating vector.

Closed-form Generating vector:

z = [g0, g
n−1
2d , g

2(n−1)
2d , · · · , g

(d−1)(n−1)
2d ] mod n

where g is a primitive root modulo a prime number n.

3. PROPERTIES OF OUR RANK-1 LATTICE

Property 1: Regular Distance Pattern

Theorem 1 Suppose n is a prime number and 2d|(n − 1). Let g be a
primitive root of n. Let z = [g0, g

n−1
2d , g

2(n−1)
2d , · · · , g

(d−1)(n−1)
2d ] mod n.

Construct a rank-1 lattice X = {x0, · · · ,xn−1} with xi = iz mod n
n , i ∈

{0, ..., n− 1}. Then, there are n−1
2d distinct pairwise toroidal distance val-

ues among X , and each distance value is taken by the same number of pairs
in X .

Remark: Our subgroup-based rank-1 lattice has a more regular pat-
tern with fewer distinct pairwise distance values.

Property 2: Bounded Toroidal Distance

Theorem 2 Suppose n is a prime number and n ≥ 2d + 1. Let z =
[z1, z2, · · · , zd] with 1 ≤ zk ≤ n − 1. Construct a rank-1 lattice X =
{x0, · · · ,xn−1} with xi = iz mod n

n , i ∈ {0, ..., n − 1} and zi 6= zj .
Then, the minimum pairwise toroidal distance can be bounded as

d(d+ 1)

2n
≤ min

i,j∈{0,··· ,n−1},i6=j
‖xi − xj‖T1

≤ (n+ 1)d

4n√
6d(d+ 1)(2d+ 1)

6n
≤ min

i,j∈{0,··· ,n−1},i6=j
‖xi − xj‖T2

≤
√

(n+ 1)d

12n
,

where ‖ · ‖T1 and ‖ · ‖T2 denote the l1-norm-based toroidal distance and the
l2-norm-based toroidal distance, respectively.

4. AN ILLUSTRATION OF SUBGROUP-BASED RANK-1 LATTICE

(a) i.i.d. Monte Carlo sampling (b) Sobol sequence (c) Our subgroup rank-1 lattice

Figure 1: The 89 points constructed by i.i.d. Monte Carlo sampling, Sobol sequence and our subgroup rank-1 lattice on [0, 1]2.

5. REGULAR DISTANCE PATTERN

(a) i.i.d. Monte Carlo sampling (b) Sobol sequence (c) Our subgroup rank-1 lattice

Figure 2: Pairwise distance constructed by i.i.d. Monte Carlo sampling, Sobol sequence and our subgroup rank-1 lattice on [0, 1]2.

6. APPROXIMATION OF THE NORMALIZATION CONSTANT AND MARGINAL LIKELIHOOD

(a) 10-d|Ẑ − Z|/Z (b) 50-d |Ẑ − Z|/Z (c) 100-d |Ẑ − Z|/Z (d) 500-d |Ẑ − Z|/Z

(e) 10-d |L̂ − L|/L (f) 50-d |L̂ − L|/L (g) 100-d |L̂ − L|/L (h) 500-d |L̂ − L|/L

Figure 3: Mean approximation error over 50 independent runs. Error bars are with in 1× std

7. EXPERIMENTAL RESULTS

Experiment 1: Comparison of the minimum l2-norm-based
toroidal distance of rank-1 lattice constructed by different methods.

d=50

n=101 401 601 701 1201 1301 1601 1801 1901 2801
SubGroup 2.0513 1.9075 1.9469 1.9196 1.8754 1.8019 1.8008 1.8709 1.7844 1.7603

Hua 1.7862 1.7512 1.7293 1.7049 1.7326 1.6295 1.6659 1.6040 1.5629 1.5990
Korobov 2.0513 1.9075 1.9469 1.9196 1.8754 1.8390 1.8356 1.8709 1.8171 1.8327

d=100

401 601 1201 1601 1801 2801 3001 4001 4201 4801
SubGroup 2.8342 2.8143 2.7077 2.7645 2.7514 2.6497 2.6337 2.6410 2.6195 2.5678

Hua 2.5385 2.5739 2.4965 2.4783 2.4132 2.5019 2.4720 2.4138 2.4537 2.4937
Korobov 2.8342 2.8143 2.7409 2.7645 2.7514 2.6956 2.6709 2.6562 2.6667 2.6858

d=200

401 1201 1601 2801 4001 4801 9601 12401 14401 15601
SubGroup 4.0876 3.9717 3.9791 3.8425 3.9276 3.8035 3.7822 3.8687 3.6952 3.8370

Hua 3.7332 3.7025 3.6902 3.6944 3.7148 3.6936 3.6571 3.5625 3.6259 3.5996
Korobov 4.0876 3.9717 3.9791 3.9281 3.9276 3.9074 3.8561 3.8687 3.8388 3.8405

d=500

3001 4001 7001 9001 13001 16001 19001 21001 24001 28001
SubGroup 6.3359 6.3769 6.3141 6.2131 6.2848 6.2535 6.0656 6.2386 6.2673 6.1632

Hua 5.9216 5.9216 5.9215 5.9215 5.9216 5.9216 5.9215 5.9215 5.8853 5.9038
Korobov 6.3359 6.3769 6.3146 6.2960 6.2848 6.2549 6.2611 6.2386 6.2673 6.2422

Experiment 2: Time Comparison of Korobov searching and our
sub-group rank-1 lattice.

d=500

n=3001 4001 7001 9001 13001 16001 19001 21001 24001 28001
SubGroup 0.0185 0.0140 0.0289 0.043 0.0386 0.0320 0.0431 0.0548 0.0562 0.0593
Korobov 34.668 98.876 152.86 310.13 624.56 933.54 1308.9 1588.5 2058.5 2815.9

d=1000

n=4001 16001 24001 28001 54001 70001 76001 88001 90001 96001
SubGroup 0.0388 0.0618 0.1041 0.1289 0.2158 0.2923 0.3521 0.4099 0.5352 0.5663
Korobov 112.18 1849.4 4115.9 5754.6 20257 34842 43457 56798 56644 69323

Experiment 3: Comparison of our subgroup-based rank-1 lattice
with other baselines on integral approximation problems.

(a) 50-d Integral Approximation (b) 100-d Integral Approximation

(c) 500-d Integral Approximation (d) 1000-d Integral Approximation

Figure 4: Mean approximation error over 50 independent runs.error
bars are with in 1× std.

8. CONCLUSION
• We proposed a closed-form subgroup-based rank-1 lattice for

integral approximation without computer searching. Our sub-
group rank-1 lattice has few different pairwise distance val-
ues, which is more regular to be evenly spaced.

• In addition, we propose a closed-form method to generate
QMC points set on sphere Sd−1. We proved upper bounds
of the mutual coherence of the generated points.

• Our subgroup-based rank-1 lattice and QMC on sphere Sd−1
can be used for Bayesian inference, kernel approximation,
generative models training, and the approximation of Wasser-
stein distance. It may also be able to combine with sequential
adaptive MC to improve performance.


